numerical method for solving optimal control problem of the linear differential systems with inequality constraints

Authors

farshid mirzaee

malayer university afsun hamzeh

malayer university

abstract

in this paper, an efficient method for solving optimal control problemsof the linear differential systems with inequality constraint is proposed. by usingnew adjustment of hat basis functions and their operational matrices of integration,optimal control problem is reduced to an optimization problem. also, the erroranalysis of the proposed method is investigated and it is proved that the order ofconvergence is o(h4). finally, numerical examples affirm the efficiency of theproposed method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical method for solving optimal control problem of the linear differential systems with inequality constraints

In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...

full text

Numerical method for solving optimal control problem of the linear differential systems with inequality constraints

In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is investigated and it is proved that the ord...

full text

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints

Most research on bilevel linear programming problem  is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...

full text

A hybrid method with optimal stability properties for the numerical solution of stiff differential systems

In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...

full text

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

full text

My Resources

Save resource for easier access later


Journal title:
computational methods for differential equations

جلد ۴، شماره ۳، صفحات ۲۳۰-۲۴۸

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023